Ergodic averages for monotone functions using upper and lower dominating processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Averages for Independent Polynomials and Applications

Szemerédi’s Theorem states that a set of integers with positive upper density contains arbitrarily long arithmetic progressions. Bergelson and Leibman generalized this, showing that sets of integers with positive upper density contain arbitrarily long polynomial configurations; Szemerédi’s Theorem corresponds to the linear case of the polynomial theorem. We focus on the case farthest from the l...

متن کامل

Ergodic Theorems for Random Group Averages

This is an earlier, but more general, version of ”An L Ergodic Theorem for Sparse Random Subsequences”. We prove an L ergodic theorem for averages defined by independent random selector variables, in a setting of general measure-preserving group actions. A far more readable version of this paper is in the works.

متن کامل

Convergence of Diagonal Ergodic Averages

The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...

متن کامل

Local Stability of Ergodic Averages

We consider the extent to which one can compute bounds on the rate of convergence of a sequence of ergodic averages. It is not difficult to construct an example of a computable Lebesgue-measure preserving transformation of [0, 1] and a characteristic function f = χA such that the ergodic averages Anf do not converge to a computable element of L ([0, 1]). In particular, there is no computable bo...

متن کامل

Ergodic averages with deterministic weights

i.e., there exists a constant C such that SN(θ, u) ≤ CN . We define δ(θ, u) to be the infimum of the δ satisfying H1 for θ and u. About H1, in the case where θ takes its values in U (the set of complex numbers of modulus 1), it is clear that for all sequences θ and u, δ(θ, u) is smaller than or equal to 1 and it is well-known (see [Ka] for example) that it is greater than or equal to 1/2. Few e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2007

ISSN: 1936-0975

DOI: 10.1214/07-ba231